

Magurele, 28-30 September 2011 - OTEM

Aerosol hygroscopicity at Ispra EMEP-GAW station

Mariana Adam

Joint Research Centre (JRC) Institute for Environment and Sustainability (IES) Climate Change and Air Quality Unit Ispra - Italy

http://www.jrc.ec.europa.eu/ http://ies.jrc.ec.europa.eu/ http://ccu.jrc.ec.europa.eu/

2

- Aerosol hygroscopicity overview
- Methods and methodology to determine aerosol hygroscopicity

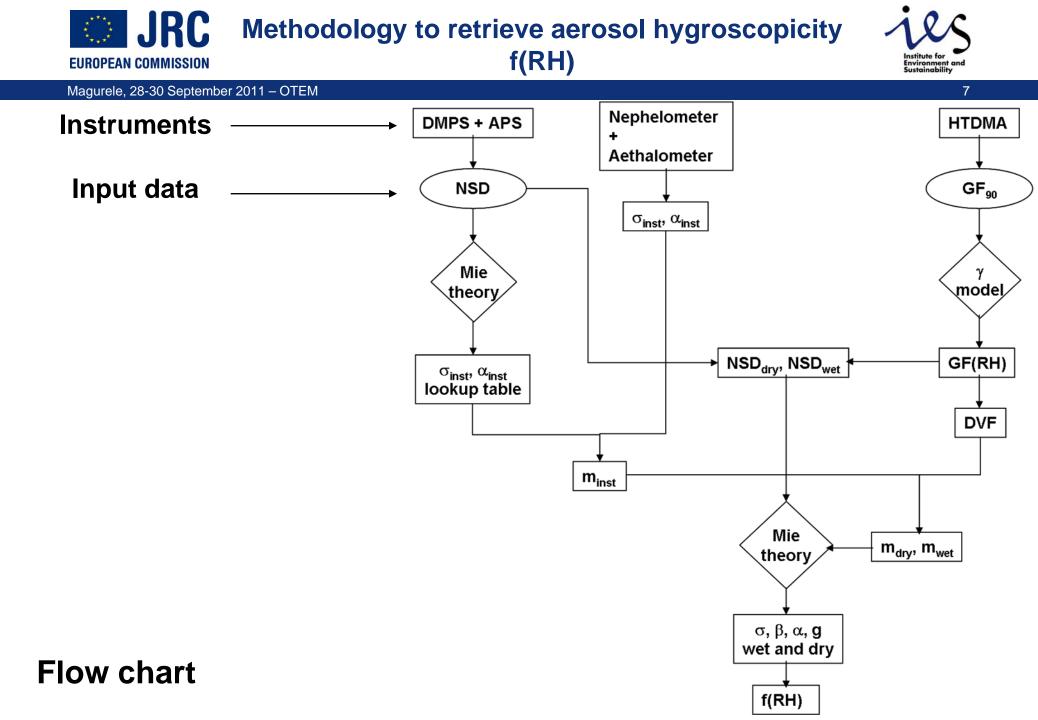
Content

- Results for Ispra EMEP-GAW station
- Conclusions

- Usually, the aerosol optical, microphysical and chemical properties are determined in dry conditions (<30% RH)
- These properties need to be corrected to ambient conditions
 - to characterize the atmosphere as it is
 - to compare with other measurements taken in ambient conditions (e.g. lidar extinction with in-situ scattering + absorption)
 - to be used as input in further studies (e.g. radiative transfer \rightarrow aerosol extinction, absorption and asymmetry factor required)

Magurele, 28-30 September 2011 - OTEM

- Variables used to characterize aerosol hygroscopicity:
 - Growth factor GF(RH)=d_wet/d_dry \rightarrow GF(RH) determines the change in particle size distribution
 - Enhancement factor $f(RH) = \theta(RH)/\theta(RH=0)$ where θ can be scattering (σ), absorption (α), extinction (κ), backscatter (β) coefficient or asymmetry parameter $g \rightarrow f(RH)$ determines the change in aerosol scattering, absorption, extinction, backscatter coefficients and asymmetry parameter
- Typical measurements (methods)
 - GF(RH) is determined by HTDMA measurements at 90% RH
 - f(RH) is determined by simultaneously measurements using two instruments, one in dry and one in wet conditions (e.g. nephelometer)
- If measurements of f(RH) are not available, then Mie theory is used (methodology)


Methodology used at Ispra EMEP station to determine enhancement factor

- Use measurements of aerosol GF (HTDMA) at 90% RH
- Use measurements of NSD (DMPS+APS) taken at RH<30% ("instruments conditions")
- Use measurements of aerosol scattering (nephelometer), absorption (aethalometer) at "instruments conditions"
- Use Mie theory to compute dry (RH=0%) and ambient (wet) aerosol scattering, absorption, extinction, asymmetry parameter and enhancement factor f(RH)

Assumptions/criteria during computations

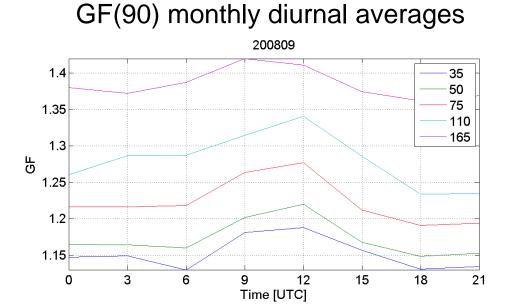
- Mie theory assumptions
- Particles number does not change with RH
- Instrument refractive index (m) is determined by matching measured and computed σ and α . Note: only data within \pm 5% difference in RH between DMPS and nephelometer are used.
- GF(RH)=(1-RH/100)^{-γ} ← γ from b.c. at RH=90%
- m=(1-v)m_w+ v*m_d where v is volume fraction of the hydrophobic fraction: v=1/GF(RH)³

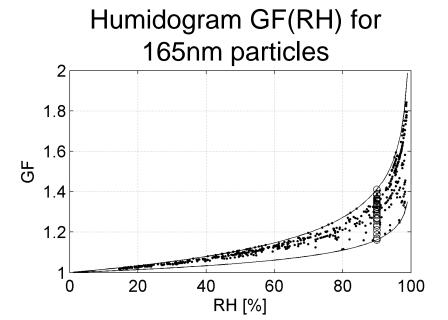
Error estimation \rightarrow **sensitivity study**

$$\varepsilon_{y} = 100 \frac{1}{2} \left(\left| \frac{y_{m}}{y} - 1 \right| + \left| \frac{y_{p}}{y} - 1 \right| \right) (\%)$$

y corresponds to the input parameters *x* (ε_x =0, i.e. no error in input parameters), while *y_m* and *y_p* correspond to the input parameters *x*- ε_x and *x*+ ε_x respectively

Errors in input data: $\varepsilon_{\text{NSD}} = \pm 10\% \text{NSD}, \varepsilon_{d_inst} = \pm 3\% d_{inst}, \varepsilon_{\sigma} = \pm 1.5\% \sigma, \varepsilon_{\beta} = \pm 1.5\% \beta, \varepsilon_{\alpha} = \pm 4\% \alpha, \varepsilon_{\langle \text{GF} \rangle} = \pm 3\% \langle \text{GF} \rangle$


9


Magurele, 28-30 September 2011 - OTEM

Growth factor GF(RH)=d_{wet}/d_{dry}

Use measurements of aerosol GF (HTDMA) at 90% RH

GF(RH)=(1-RH/100)-γ γ from b.c. at RH=90%

10

Enhancement factor f(RH)

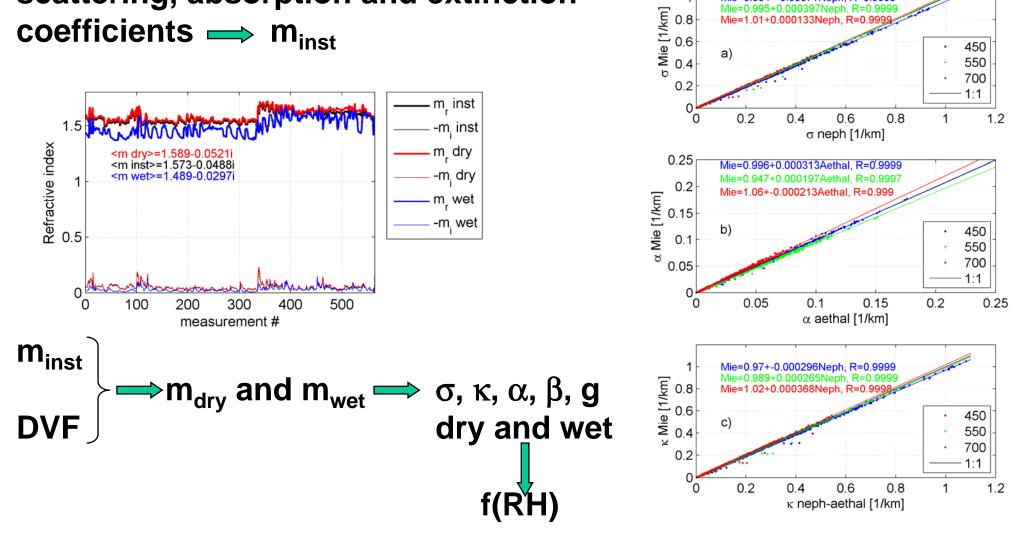
Data availability: 1062 hourly data over 84 days (during 2008-2009)

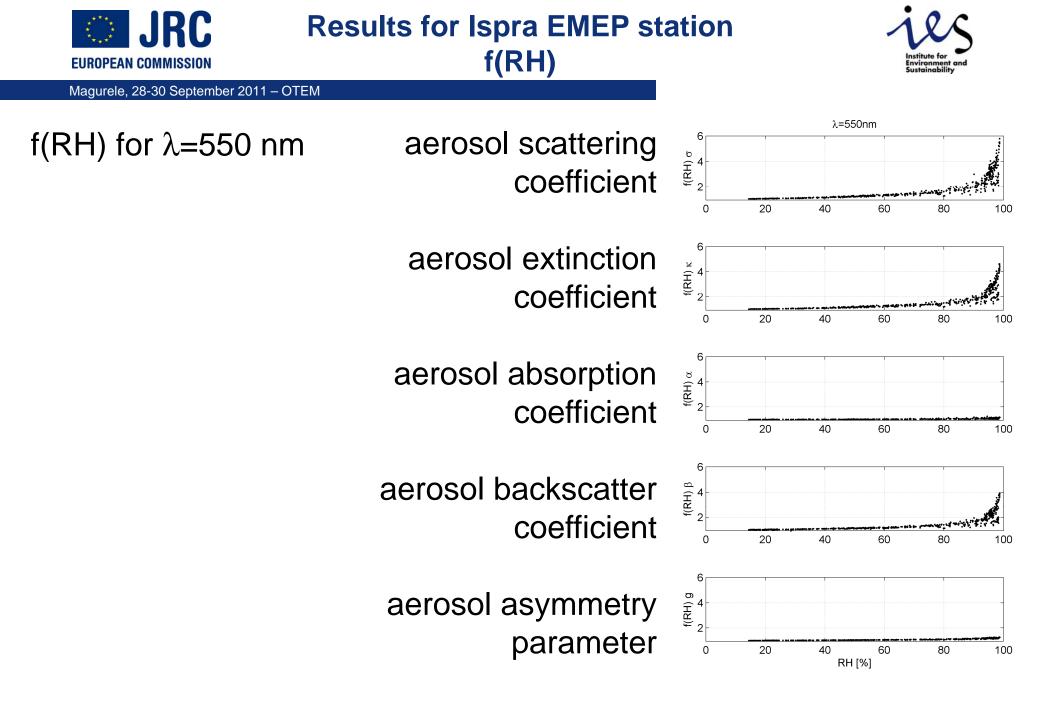
eliminate *m* outliers (difference measurements – computations < 30%) \Rightarrow 655 available hourly data

- σ, α, κ: regression computed vs measured
 - Eliminate outliers
 - \Rightarrow 642 data for σ
 - \Rightarrow 638 data for α
 - \Rightarrow 641 data for κ
 - \Rightarrow final data set: 564 data

Mie=0.964+-0.00071Neph, R=0.9999

Mie=0.995+0.000397Neph, R=0.9999

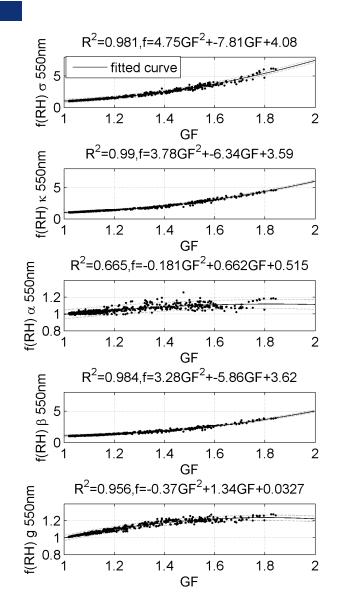

Mie=1.01+0.000133Neph, R=0.99


1

11

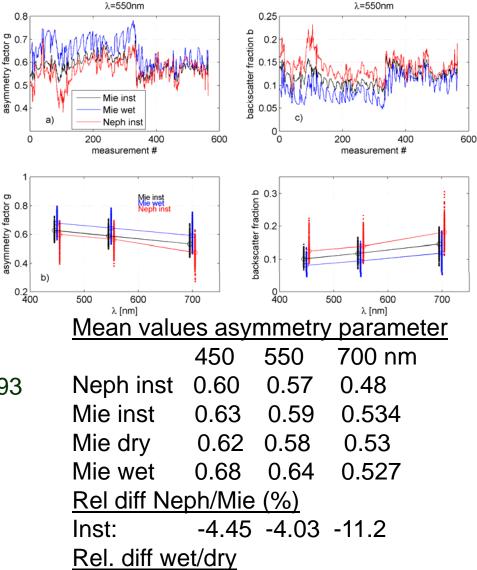
Magurele, 28-30 September 2011 - OTEM

Fitting measured and computed scattering, absorption and extinction coefficients $\implies m_{inst}$



Magurele, 28-30 September 2011 - OTEM

Strong correlation between enhancement factor and growth factor for scattering, extinction, backscatter coefficients and asymmetry parameter

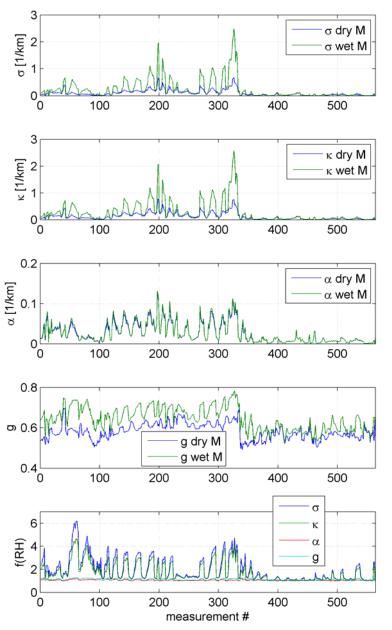

Mie:

14

Magurele, 28-30 September 2011 - OTEM

Asymmetry parameter *g* and backscatter fraction *b* (hemispherical backscatter/scattering)

8.03 9.21

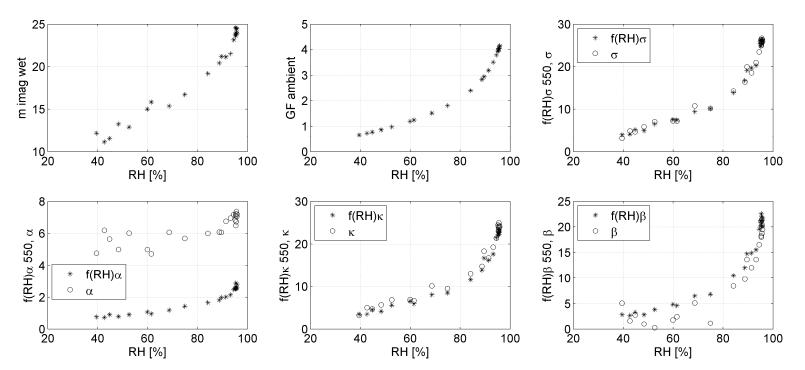

10.78

Note: nephelometer: empirical formula (Arnott) g=-7.143889*b³+7.464439*b²-3.96256*b+0.9893 b = backscatter fraction

EUROPEAN COMMISSION Results for Ispra EMEP station f(RH)

Magurele, 28-30 September 2011 - OTEM

Correction to ambient conditions for aerosol scattering, extinction and absorption coefficients, asymmetry factor (e. g. λ =550nm)


16

Magurele, 28-30 September 2011 - OTEM

Mean errors [%] for the main variables. The optical parameters represent 550nm.

Errors e.g. 10.02.2009

	m _r	m _i	g _{Mie}	b _{Mie}	GF	$\sigma_{\rm Mie}$	α_{Mie}	κ _{Mie}	β_{Mie}
Dry	4.8	11.2	3.2	8.0	-	1.3	4.4	1.5	2.8
Inst.	4.6	11.9	3.2	8.3	0.24	2.0	4.6	2.2	2.3
Wet	3.0	RH	3.2	10.9	RH	RH	RH	RH	RH
		dep			dep	dep	dep	dep	dep

At 90% RH:

- GF = 1.32 ±0.06
- <f(RH)> at 550nm
 - 1.72 \pm 0.79 for κ
 - 1.94 \pm 1.04 for σ
 - 1.55 \pm 0.62 for β
 - 1.05 \pm 0.05 for α
 - 1.11 \pm 0.08 for g

- Asymmetry factor g

- Relative difference [%] wet/inst. conditions λ : 450 550 700nm

Conclusions

Mie: 8.03 9.21 10.78

- Relative difference [%] Neph./ Mie:

Inst: -4.45 -4.03 -11.2

Magurele, 28-30 September 2011 - OTEM

f(RH)

- Can be broadly described by the same power low as for GF(RH) → diurnal/seasonal behavior has to be checked
- A strong correlation is found between f(RH) and GF(RH) for σ , κ , β , g
- There is a weak correlation with absorption (absorption shows a weak change with RH)

- Given GF climatology and f(RH) GF correlation, correct the optical variables for ambient conditions
- The corrections for ambient conditions can not be ignored
- Next steps:
- correct the measurements taken at low RH ("instruments conditions") to ambient conditions
- Calculate radiative forcing for both dry and wet conditions and see the implications
- Acquire a new nephelometer for direct measurements on scattering enhancement factor

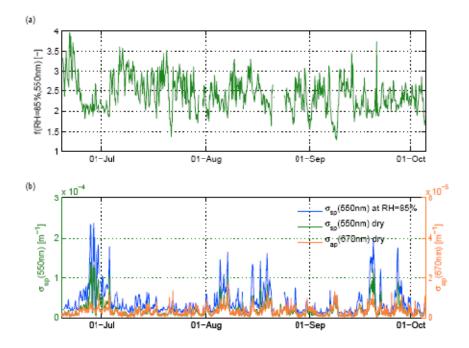
J.P. Putaud - discussions

- S. Martins dos Santos measurements HTDMA, DMPS and APS
- A. dell'Aqua measurements nephelometer and aethalometer
- C. Gruening preliminary data processing

Paper to be submitted to ACP

Thank you for your attention!

Magurele, 28-30 September 2011 – OTEM


Zieger et al., 2010 ACPD (Cabauw)

 $\sigma_{\sf ep}(\sf RH) = c(f(\sf RH)\sigma_{\sf sp} + \sigma_{\sf ap}).$

 $c_p = p(h)T_0/p_0T(h)$ accounts for pressure and temperature differences

backup

inside (p_0, T_0) and outside (p(h), T(h)) the nephelometer.

Fig. 11. Lidar and in-situ measurements of the aerosol extinction coefficient σ_{ep} at λ =355nm (4th of August 2009, 00:59 – 03:07). Black line: Direct lidar measurement of σ_{ep} ; Colored lines: σ_{ep} calculated from the backscatter signal using measured lidar ratios (LR) obtained from mean values of different height levels (±100 m); black square: σ_{ep} measured in-situ at dry conditions; colored circles: σ_{ep} brought to ambient conditions (color code denotes the ambient RH measured at the tower, error bars are retrieved via Gaussian error propagation).

