

Studies of the impact of aerosol optical properties on climate change processes

T. Zielinski, A. Ponczkowska, P. Makuch, J. Kowalczyk,T. Petelski, J. Piskozub, A. Strzałkowska, A. Smirnov,B. Holben, J. Pasnicki, K. Zielinski

OTEM, CLUJ 2010

Where do I come from

© 2001. Her Majesty the Queen in Right of Canada, Natural Resources Canada.

Research vessel OCEANIA

Measuring stations in the Baltic

Duck, NC, USA

- Studies Of Aerosol
 Properties SOAP 2006
- Access to field stations:
 - Finokalia sampling station Crete (35° 20'N, 25° 40'E)
 - Dates:
 - 27 July 10 August 2006

Instrumentation (Oceania/Svalbard)

Instrument	Parameters observed	Location	Operated since
Lidar LB 10 (532 nm)	Aerosol profiles	r.v. Oceania/Svalbard	2009
Microtops II sunphotometers	AOD	r.v. Oceania/Svalbard	2001
Microtops II ozonometer	Ozone profiles	r.v. Oceania/Svalbard	2001
PMS laser particle counter CSASP-100	Coarse aerosol size distribution and concentration	r.v. Oceania/Svalbard	1993
TSI Condensation Particle Counter	Fine mode aerosol concentration	r.v. Oceania/Svalbard	2007
TSI laser counter	Aerosol size distribution and concentration	r.v. Oceania/Svalbard	2010
TSI nephelometer	Aerosol light scattering	r.v. Oceania/Svalbard	2010
GILL acoustic anemometer	Wind speed pulsations	r.v. Oceania/Svalbard	2007
Meteo-station	Meteorological parameters	r.v. Oceania/Svalbard	1993
Eppley Precision spectral Pyranometers	Solar radiation fluxes	r.v. Oceania/Svalbard	1993
Kipp&Zonen net radiation meter	Upward and downward radiation fluxes	r.v. Oceania/Svalbard	2000

Source: www.nioz.nl/loicz

Description of experiments

Season of measurements in 1993-2003	Eastern station					Western	n station	
	Number of experi- ments	Number of measu- ring days	Number of onshore wind days	Number of offshore wind days	Number of experi- ments	Number of measu- ring days	Number of onshore wind days	Number of offshore wind days
Winter (February, March)	1	11	2	7	1	2	2	0
Spring (late March, April, May, early June)	6	42	26	16	5	31	18	13
Summer (June, August, early September)	2	12	4	6	2	9	4	5
Fall (September, October, November)	6	37	12	29	5	41	10	31
Total	15	102	44	58	13	83	34	49

Description of the campaigns

- Application of the FLS-12 lidar system for obtaining the horizontal and vertical profiles of aerosol concentration and size distributions as well as optical properties
- The useful part of the optical path is between 60 and 2000 m and altitudes up to 600 m can be sounded.
- Simultaneous measurements using Microtops sunphotometers, the lidar system and Hires A and Hires B
- Full meteorological coverage
- Measurements during and beside the overpasses

Aerosol cloud in the coastal zone at an offshore wind speed of 5 m/s

Variations of aerosol concentration with offshore distance in the Baltic Sea

Lidar-obtained marine aerosol concentration for two station types

Variations of marine aerosol extinction with wind speed at both types of stations

Variations of AOT with wind speed at both types of stations

AOT in the coastal area

Extinction coefficient - comparison

Author	Air mass type	Extinction coefficient [km ⁻¹] $\lambda = 550$ nm	Area/model	Description
Gathman, 1983	Continental	0.370	NAM - Navy Aerosol Model	h = 4 m a.s.l. RH = 80% v = 8 m s ⁻¹
d'Almeida and Koepke, 1991	Continental Marine	0.167 0.078	Global Aerosol Model	Entire atmos. column RH = 80%
Gathman and Jensen, 1995	Continental Marine	0.58 0.04	Coastal station Katwijk aan Zee, Holland	h = 2 m a.s.l.
Gathman and Smith, 1997	Marine	0.32	San Diego Bay, USA	h = 4 m a.s.l. RH = 80% v = 1,8 m s ⁻¹
Gathman and Smith, 1997	Marine	0.103	San Diego Bay, USA	h = 8 m a.s.l. RH = 80% v = 1,8 m s ⁻¹
Hess et al, 1998	Continental Urban Marine	0.151 0.353 0.090	Model OPAC- Optical Properties of Aerosols and Clouds	Atmos. column h∈[0; 2000 m] RH = 80%

Extinction coefficient - comparison

Author	Air mass type	Extinction coefficient [km ⁻¹] $\lambda = 550$ nm	Area/model	Description
Jensen et al., 2001	Marine	0.6	Monterey Bay, USA	h = 4 m a.s.l. RH = 80%
Jensen et al., 2001	Marine	0.1	Monterey Bay, USA	h = 10 m a.s.l. RH = 80%
Zieliński, 2006	Continental (lidar) Marine (lidar)	0.077 0.0096	Southern Baltic (Eastern station)	h = 4 m a.s.l. RH = 80% v = 7,5-9 m s ⁻¹
Zieliński, 2006	Continental (lidar) Marine (lidar)	0.0098 0.0068	Southern Baltic (Eastern station)	h = 30 m a.s.l. RH = 80% v = 7,5-9 m s ⁻¹
Zieliński, 2006	Marine (spring) Continental (fall)	0.006-0.008 0.027-0.047	Southern Baltic (Eastern station)	h = 4 m a.s.l. RH = 80% v = 3,8-4,8 m s ⁻¹ v = 4,8-6,0 m s ⁻¹
Zieliński, 2006	Marine (spring) Continental (fall)	0.075-0.078 0.105-0.113	Southern Baltic (Western station)	h = 4 m a.s.l. RH = 80% v = 4,1-4,3 m s ⁻¹ v = 3,6-4,2 m s ⁻¹

Maritime Aerosol Network

Work

Work

Microtops II sunphotometer

Optical channels	$340 \pm 0.3 \text{ nm}, 2 \text{ nm FWHM}^*$ $380 \pm 0.4 \text{ nm}, 4 \text{ nm FWHM}$ $440 \pm 1.5 \text{ nm}, 10 \text{ nm FWHM}$ $500 \pm 1.5 \text{ nm}, 10 \text{ nm FWHM}$ $675 \pm 1.5 \text{ nm}, 10 \text{ nm FWHM}$
Resolution	0.01 W m ^{- 2}
Dynamic range	>300000
Viewing angle	2.5°
Precision	1-2%
Non linearity	max. 0.002%

Radiative forcing

Aerosol radiative forcing at an arbitrary place in atmosphere

$$\Delta F = F^{net}_{aerosol} - F^{net}_{clean}$$

 $F^{net} = F \!\!\downarrow - F \!\!\uparrow$

where: $F\downarrow$ and $F\uparrow$ radiation fluxes [W/m²] at a fixed altitude a.s.l.

Source: Satheesh and Ramanathan (2001)

Aerosol radiative forcing

$\Delta F \cong -1/2f \times T_i^2(1-A) \times (1-R)^2 \beta \times \nu$

No multiple scattering and absorption.

where:

- $f-solar \ constant,$
- T_i transmission through the part of atmosphere over the aerosol layer,
- A average cloud coverage,
- R reflection from Earth surface,
- β upward scattering coeff. for entire sloar ardiation spectrum,
- v averaged optical thickness

Source: Charlson et al. (1991)

Climate change uncertainty

• Climate change "sensitivity"

$\Delta T = a \Delta F$

where:

- ΔT global, averaged temperature change
- ΔF global, averaged radiation forcing
- a climate "sensitivity"
- In climate models clouds are the greatest source of uncertainity
- In retrospective studies lack of knowledge on aerosol radiative forcing

Data

Level 1.5 - Cloud and pointing error screening criteria:

- Within a series, the minimum aerosol optical depth for each point is identified at each wavelength (τai). The following criteria are examined for cloud and pointing errors:
- If the difference (τai τai min) for each spectral channel is less than the maximum of { τai min *0.05, 0.02}, then the point within a series is considered cloud and pointing error free.

If the above screening removes all but one point from a series, then an additional criterion below is applied to the spectral channels:

• If the Angstrom parameter computed using all available channels between 440 and 870 nm is greater than -0.1, then the point is considered cloud and pointing error free.

Level 2.0 - Quality Assurance Criteria:

- Final post-deployment calibration values are applied to the data set.
- Spectral channels are evaluated for filter degradation, other possible instrumental problems, or data anomalies.
- Aerosol optical depth data are inspected for possible cloud contaminated outliers.

Figure 7. Latitudinal dependence of aerosol optical depth in the Atlantic Ocean. Seasons in the legend correspond to meteorological seasons for Northern Hemisphere.

Maritime Aerosol Network

Oceania Spring 10 AOD 500nm Interpolated (Daily Average) Level 1.5 < 0.1 0.1 to 0.2 0.2 to 0.3 0.3 to 0.5 0.5 to 0.7

PI: Tymon_Zielinski and Brent_Holben Email: tymon@iopan.gda.pl and Brent.N.Holben@nasa.gov

AERONET Maritime Aerosol Network

Ocean conveyor belt

Source: Prentice Hall

Specifics of the Arctic studies

- High ground albedo (multiplescattering between ground and atmosphere)
- Low sun elevation above the horizon
- Polar day and night
- Low air temperature (low absolute water vapor content)

- Objectives:

Determination of the vertical structure of the chemical, physical, and optical properties of Arctic aerosol particles, including solar radiative closure between observed and calculated aerosol properties (direct climate effect)

Lidar measurements near Spitsbergen

DATE	STAT.	TIME (local)	NUMBER OF SHOTS (6)	COLOR	POWER	LAT.	LONG.
2.07.2002	01	11:33	1(4)	BLUE	450		
	01	11:41	1(4)	GREEN	400		
	O4	15:39	1(4)	GREEN			
	O4	15:46	1(4)	BLUE			
3.07.2002	K 3	12:34	1	BLUE	470	75.00	18.00
	K3	12:46	1	GREEN	460		
	K14	16:51	1	GREEN	400		
7.07.2002	N-8	12:27	1(8)	BLUE	320	76.30	6.00
	N-8	12:40	1(8)	GREEN	370		

Lidar measurements near Spitsbergen

DATE	STAT.	TIME (local)	NUMBER OF SHOTS (6)	COLOR	POWER	LAT.	LONG.
9.07.2002	S7	8:59	1	BLUE		77.495	9.53
	S7	9:08	1	GREEN			
	S4	12:53	1	GREEN	260	77.55	11.02
	S4	13:07	1	BLUE	300		
	S4	13:28	1	BLUE			
	S4	13:42	1	GREEN			
	S3	15:05	1	GREEN		78.02	12.00
	S3	15:15	1	BLUE			
	S2	17:09	1	BLUE		78.07	12.55
	S2	17:19	1	GREEN			

Arctic Study of Tropospheric Aerosol, Clouds and Radiation – ASTAR 2004-2007

<u>AWI Bremerhaven/Potsdam, Germany</u> <u>NIPR Tokyo, Japan</u> <u>ITM/MISU Stockholm, Sweden</u> <u>DLR-IPA Oberpfaffenhofen, Germany</u> <u>LaMP Clermont-Ferrand, France</u> <u>IFT Leipzig, Germany</u> <u>KNMI de Bilt, The Netherlands</u> <u>NILU Kjeller, Norway</u>

DLR Flight Operation, Germany FMI Helsinki, Finnland IOPAN Sopot, Poland Norsk Polarinstitutt, Norway IUP Bremen, Germany CNR Bologna, Italy Hokkaido University Sapporo, Japan Nagoya University, Japan NASA LaRC Hampton, USA NOAA Boulder, USA

PAS

POLAR-AOD participating institutions

- Institute of Atmospheric Sciences and Climate (ISAC), CNR, Bologna, Italy
- Alfred Wegener Institute of Polar and Marine Research, Bremerhaven/Potsdam, Germany
- Global Monitoring Division (GMD), NOAA, Boulder, USA
- Atmospheric Environment Services, Downsview, Ontario, Canada
- Arctic and Antarctic Research Institute, St. Petersburg, Russia
- Institute of Environmental Physics / Remote Sensing, University of Bremen, Germany
- Norwegian Institute for Air Research (NILU), Tromsø, Norway
- PMOD/WRC, Davos, Switzerland
- Finnish Meteorological Institute, Helsinki, Finland
- Dept. of Meteorology, Stockholm University, Stockholm, Sweden
- Grupo de Óptica Atmosférica, Universidad de Valladolid, Spain
- ALOMAR/Andoya Rocket Range, Norway
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- National Institute of Polar Research (NIPR), Tokyo, Japan

Microtops II sunphotometer

From the Ny Ålesund (AWIPEV) measurements performed from 1996 to 2005, a set of daily mean values of *AOD(500 nm)* performed for Arctic haze conditions on the winter and spring days were determined, yielding an average value of about 0.09, compared to an average summer value of less than 0.04.

Source: Tomassi et al. 2nd International Conference on Global Warming and the Next Ice Age Santa Fe, New Mexico, July 17 – 19, 2006

The time patterns of the daily mean values of *AOD(500 nm)* give not only a measure of the changes in the columnar aerosol extinction features due to the Pinatubo eruption in 1991 but also offer evidence for the marked seasonal changes in *AOD*, due the presence of Arctic haze in the spring months, and other important transport episodes (Asian dust in April 2002, and boreal smokes in summer 2004).

2nd International Conference on Global Warming and the Next Ice Age Santa Fe, New Mexico, July 17 – 19, 2006

AOT in March 2006

NY-ALESUND INTERCOMPARISON 26 MARCH 2006

Aerosol optical thickness in the Svalbard region

AOT/Angstroem exponent

Acknowledgements

- University of Warsaw, Poland
- Alfred Wegener Institute, Germany
- DLR-Berlin, Germany
- SPAWAR Systems, San Diego, USA
- Navy Research Laboratory, Washington, D.C.
- Office of Naval Research, USA
- ALOMAR Laboratory, Norway
- Unviersity of Valladolid, Spain

Some recent publications

- Aerosols in Polar regions: A historical review on the basis of optical depth and in-situ observations, **Journal of Geophysical Research**, Vol. 112, D16205, doi:10.1029/2007JD008432, C. Tomasi, V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R. S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G. Hansen, C. L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V. Cachorro, P. Ortiz, A. de Frutos, S. Blindheim, M. Frioud, M. Gausa, **T. Zielinski, T. Petelski**, M. Shiobara, **2007**.
- Lidar-based Studies of Aerosol Optical Properties Over Coastal Areas, Sensors, 7, 3347-3365, T. Zielinski, B. Pflug, 2007.
- Maritime Aerosol Network (MAN) as a component of AERONET, Journal of Geophysical Research-Atmospheres, Vol. 114, D06204, doi: 10.1029/2008JD011257, A. Smirnov, B. Holben, I. Slutsker, D. Giles, C. McClain, T. Eck, S. Sakerin, A. Macke, P. Croot, G. Zibordi, P. Quinn, J. Sciare, S. Kinne, M. Harvey, T. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J. Goes, N. Nelson, P. Larouche, V. Radionov, P. Goloub, K. Krishna Moorthy, R. Matarrese, E. Robertson, F. Jourdin, 2009.
- Aerosol optical depth measured at different coastal boundary layers and it links with synoptic-scale features, **Remote Sensing**, 1, doi:10.3390/sensors90rs1030557, **A. Ponczkowska, T. Zielinski, T. Petelski**, K. Markowicz, G. Chourdakis, G. Georgoussis, **2009**.
- Cluster analysis of the impact of air back trajectories on aerosol optical properties at Hornsund, Spitsbergen, Atmospheric Chemistry and Physics, 10, (3), 877 – 893, A. Rozwadowska, T. Zielinski, T. Petelski, P. Sobolewski, 2010.