Optimization of aerosol optical properties retrieval by use of low-range and high-range lidars. Comparison with sun photometry

Outline

- AOD
- Instruments: sunphotometer, lidars
- Our method
- Results
- Conclusions

Aerosol optical depth (AOD)

- a quantitative measure of the extinction of solar radiation by
 - aerosol scattering
 - absorption
- between the point of observation and the top of the atmosphere
- the extinction coefficient integrated on an atmospheric path (generally scaled at the zenith direction)

$$AOD = \int_{Z_0}^{Z} \alpha_a(z) dz$$

- used by modellers to assess:
 - the direct radiative forcing of aerosols
 - surface PM (?)
- can be retrieved from observations of atmospheric spectral transmission
- AOD = total optical depth minus modeled estimates of the other components

$$\tau(\lambda)_{aerosol} = \tau(\lambda)_{tot} - \tau(\lambda)_{water} - \tau(\lambda)_{Rayleigh} - \tau(\lambda)_{O3} - \tau(\lambda)_{NO2} - \tau(\lambda)_{CO2} - \tau(\lambda)_{CH4}$$

Sunphotometer

- CIMEL Electronique 318A spectral radiometer
- 7 wavelengths: 340, 380, 440, 500, 670, 870, and 1020 nm
- Beer-Lambert-Bouguer law
 - V = digital voltage at wavelength λ
 - Vo =extraterrestrial voltage
 - *d* =ratio of the average to the actual Earth-Sun distance
 - \Box τ_{tot} =total optical depth
 - *m* =optical air mass

- uncertainty in AOD (cloudfree conditions)
 - <0.01 for λ >440 nm
 - − ≤0.02 for λ <440 nm
- spectral aerosol optical depth → aerosol size distribution
- AOD several wavelengths → Angstrom parameter

$$\alpha = -\frac{d \ln \tau_{aerosol}}{d \ln \lambda}$$

$$(\lambda) = V_0(\lambda) d^2 \exp\left[-\tau_{tot}(\lambda) \cdot m\right]$$

OTEM 2010, Cluj-Napoca, 19-21 October 2010

V

- Lidar can detect layers
- Lidar (some of them) can measure extinction profiles → AOD

$$AOD = \int_{Z_0}^{Z} \alpha_a(z) dz$$

- Lidar can measure at several wavelengths → Angstrom parameter →
 - aerosol size
- helpful to assess:
 - if aerosol type is singular
 - if the aerosol is largely confined to the boundary layer
 - the dept of the boundary layer

BUT

- calibration!
 - generally in far range, but not always free of aerosols
- overlap!
 - powerful Raman systems have high overlap (Km) \rightarrow blind for most of the PBL
- LR
 - elastic channels only \rightarrow non-determination of lidar equation \rightarrow large errors for the PBL
 - elastic + Raman channels \rightarrow not enough SNR to sense the upper troposphere

to make sure the assumptions for estimating the surface PM apply!

Our site

- 7-wavelegths sunphotometer
 - 340, 380, 440, 500, 670, 870, 1020 nm
- 3+2w Raman lidar (RALI)
 - dynamic range: 1-15Km
 - 3 elastic (1064, 532, 355nm)
 - 2 Raman (607, 387nm)
- 2w elastic lidar (LISA)
 - dynamic range: 0.3-6Km
 - 2 elastic (1064, 532nm)
- 1w+dep elastic lidar (MILI)
 - dynamic range: 0.3-6Km
 - 1 elastic (355p, 355s)

Our method

- merge RCS of RALI, LISA and MILI (elastic) \rightarrow 3 elastic RCS 0.3 15Km
 - simultaneous measurements
 - same air column
 - assuming linear behavior of the instrument
 - search for best fit interval (after the full overlap of the HR lidar, bellow the high noise altitude of the LR)
- calculate LR₅₃₂, LR₃₅₅ profile from RALI
- calibrate backscatter so that linear fit of Angstrom parameter profile has slope≈0

- extrapolate extinction profiles to the ground
- calculate AOD from lidar (532, 355nm)
- use Angstrom parameter to shift AOD from sunphotometer's to lidar's wavelengths
- compare values
- calculate errors (statistical and propagated)

 $\alpha = -\frac{d\ln\tau_{aerosol}}{d\ln\lambda}$

Our method

Results: April 26, 2010

Results: April 26, 2010

Results: May 05, 2010

Results: May 05, 2010

Results

Day	Sunphotometer		HR signal		Merged signal	
	AOD		AOD		AOD	
	532nm	1064nm	532nm	1064nm	532nm	1064nm
03-May-10	0.17+/-0.017	0.07+/-0.007	0.15+/-0.045	0.05+/-0.015	0.16+/-0.014	0.06+/-0.006
05-May-10	0.28+/-0.028	0.17+/-0.017	0.22+/-0.066	0.14+/-0.042	0.26+/-0.018	0.17+/-0.013
10-May-10	0.13+/-0.013	0.03+/-0.003	0.09+/-0.027	0.02+/-0.006	0.12+/-0.011	0.03+/-0.003
13-May-10	0.37+/-0.037	0.23+/-0.023	0.33+/-0.099	0.18+/-0.054	0.35+/-0.022	0.22+/-0.015
14-May-10	0.19+/-0.019	0.06+/-0.006	0.18+/-0.054	0.04+/-0.012	0.18+/-0.017	0.06+/-0.006

Results

Conclusions

- The retrieval of aerosol optical parameters from lidar is limited by instrument's capability and inversion algorithm.
 - low-range lidars \rightarrow calibration in far-range (SNR)
 - far-range lidars \rightarrow the assumptions for the "blind" region (extrapolation! homogeneous atmosphere!)

\rightarrow MERGING

- to identical products
 - data describing the same atmosphere (measurements are simultaneous and refer to the same air column)
 - free of instrumental dependencies.
- to time-averaged signal
 - is possible if the 2 lidars have a suitable merging interval (SNR, linearity)
 - the presence of clouds is not important (linearity!)
- benefits?
 - reduced errors due to calibration (use of HR capabilities)
 - increased dynamic range
 - reduced relative error for AOD
- The combination of sunphotometers and lidars using AOD as common parameter:
 - improved accuracy in the determination of aerosol's optical and microphysical parameters
 - better assumption of the lidar ratio.

Acknowledgements

- The authors wish to acknowledge DELICE grant contract FP7 REGPOT-2008-1 Contract no. 229907.
- This work was supported by a grant from Norway through the Norwegian Co-operation Programme for Economic Growth and Sustainable Development in Romania.
- The AERONET database is maintained and made publicly available by B.N. Holben (NASA's Goddard Space Flight Center, Greenbelt, MA).

