

SOOT PARTICLES SURFACE ANALYSIS: FROM LABORATORY EXPERIMENTS TO FIELD CAMPAIGNS

M. Ziskind¹, A. Faccinetto^{1,2}, P. Desgroux², and C. Focsa¹

¹Laboratoire de Physique des Lasers, Atomes et Molécules, ²Laboratoire de Physico-Chimie des Processus de Combustion et de l'Atmosphère, Centre d'Etudes et de Recherches Lasers et Applications, Université Lille 1, 59655 Villeneuve d'Ascq cedex, France

Subject and Motivation

Soot: carbon particles resulting from incomplete combustion processes

PAHs : compounds containing two or more aromatic rings, playing a fundamental role in soot inception

Naphthalene $C_{10}H_{8}$

Benzo(k)Fluoranthene $C_{20}H_{12}$

PAHs are adsorbed onto the soot matrix

The analysis of soot surface composition provides key information on:

- soot formation mechanism(s)
- health and atmospheric impact depending on the fuel nature and \geq combustion stage

Subject and Motivation

Human health concerns

carcinogenic potential of PAHs adsorbed on soot particles

Atmospheric issues

soot particles as nucleation sites for cirrus clouds formation

health and atmospheric impact depending on the fuel nature and combustion stage

Experimental Technique:

Laser Desorption /Laser Ionization /ToF Mass Spectrometry

Experimental Technique:

Laser Desorption /Laser Ionization /ToF Mass Spectrometry

Detection:
 Reflectron Time-Of-Flight
 mass spectrometer

sample

ionization

• Desorption Laser: doubled Nd:YAG, $\lambda = 532$ nm, 10 ns pulse, 10 Hz, 0.01–1.5 J/cm²

desorption

2 Ionization Laser Multiphotonic: quadrupled Nd:YAG, $\lambda = 266$ nm, 10 ns pulse, 10 Hz, 0.01-3 J/cm²

UNY

which peaks are representative of the adorbed phase only ? which ones correspond to by-products of the desorption/ionization processes (fragmentation, destruction of the soot matrix...) ?

How can we minimize these signals ?

3-Step Strategy

1-Thorough characterization of the desorption and ionization processes on pure PAH samples
2-Study of "synthetic" soot samples (PAHs adsorbed on black carbon)

3-Analysis of collected soot

Blattleret CSoutt

exhaustive parametric study on various parameters:

Laser wavelength λ : \Rightarrow Influence of the optical absorption coefficient on the desorption yield

Delay Δt between desorption and ionization laser pulses: \Rightarrow Dynamic of the species present in the plume

Laser desorption and ionization fluences F_d & F_{ion} a.u) \Rightarrow Fragmentation issue ; Relationship between desorption and ionization processes

yrene peak Intensity

Evolution ot the Spectra with Fluence:

between the desorption threshold and emergence of the first fragments

Intensity of the PAH signal \Leftrightarrow Competition between ejection and fragmentation through an increase of the internal energy of the desorbed species

2-Study of synthetic soot samples

Standard procedure

- Prepare a mother solution having a known PAHs concentration
- Treat the solution with a known amount of black carbon
- Eliminate the solvent (DCM)
- Press the carbon with PAHs so adsorbed

2-Study of synthetic soot samples

Standard procedure

- Prepare a mother solution having a known PAHs concentration
- Treat the solution with a known amount of black carbon
- Eliminate the solvent (DCM)
- Press the carbon with PAHs so adsorbed

\Rightarrow PAHs concentration in synthetic soot

 F_{D} = 0.2 J/cm², F_{ion} = 0.2 J/cm²

Mass (amu)

Pyrene concentration: 5 .10⁻⁶ mol/g Signal extinction after 20 laser shots

Sensitivity better than 1 fmol/ laser shot for pyrene

Desorption issue in synthetic soot

ejected molecules are representative of the adsorbed phase or come from the destruction of the soot matrix ?

Desorption issue in synthetic soot

Mihesan, Ziskind, Therssen, Desgroux, Focsa, J. Phys.: Condens. Matter, 20, 025221 (2008)

Analysis of soot collected in flame

Soot Sampling

In our experimental work LDI TOF-MS is an *ex-situ* technique
 Soot must be <u>sampled</u> from flames

Soot is collected through a double-wall quartz probe, which allows (1) local sampling and (2) fast dilution with gaseous nitrogen, needed to minimize:

Quartz
To the pump

Combustion gas condensation

Chemical reactions

Soot is deposed on the surface of a porous Borosilicate glass filter, suitable for the mass analysis

Fuel influence

Purpose: test the ability of Diesel surrogates to reproduce the soot formation process occurring during the combustion of a commercial Diesel.

surrogates:

- > 70% n-decane + 30% α -methylnaphthalene
- > 80% n-decane + 20% α -methylnaphthalene

Similar physical/optical soot properties

mappings obtained respectively by Laser-Induced Incandescence (LII) at 1064 nm and Laser-Induced Fluorescence at 532 nm

Fuel influence

Purpose: test the ability of Diesel surrogates to reproduce the soot formation process occurring during the combustion of a commercial Diesel.

surrogates:

- > 70% n-decane + 30% α -methylnaphthalene
- > 80% n-decane + 20% α -methylnaphthalene
- Similar physical/optical soot properties

BUT Very different adsorbed phase PAH content

- the fuel composition strongly influences the adsorbed phase of the soot particles
- Petrogenic PAHs present in Diesel
- how they influence the Pyrogenic PAHs formation ?

Fig. 5. Five shots averaged mass spectra of PAHs desorbed from soot (desorption fluence 0.26 J/cm^2 , ionisation fluence $1.3 \times 10^{-3} \text{ J/cm}^2$). (a) Diesel soot, full range and zoom on heaviest masses in the inset; (b) surrogate soot, full range and zoom on 178 amu peak.

Proc. Combust. Inst. 32 (2009) 737

Analysis of soot collected in field campaigns

North Sea

EU project QUANTIFY

ATMOSPHERIC SOOT NETWORK (www.asn.u-bordeaux.fr)

Characterisation of particulate matter and gaseous emissions from a large ship diesel engine

Atmospheric Environment

43 (2009) 2632

Technical parameters of the ship.

Gross tonnage	58 438
Net tonnage	21 660
Main diesel engine	
Kincaid B&W 6L90 GBE	20 200 kW, 97 rpm ^a
Thrusters	$2 \times 1398 \text{ kW}$
Full sea speed	17.5 knots (32.4 km h ⁻¹)
Fuel consumption at sea	HF0 ^b 3.2-3.4 m ³ h ⁻¹

^a rpm: rotations per minute.

^b HFO: Heavy-Fraction Oil (residual oil).

June 2007, Celtic Sea, English Channel,

Technical parameters of the ship and ship engine operation specific for the measurement campaign. The exhaust flow is given at normalized conditions (273.14 K, 1013.25 hPa)

Date	14/6/2007
Brake power load, %	84
Brake power, main engine, MW	17.0
Speed, km h ⁻¹	31.5
Calculated fuel consumption, kg h-1	3263
Calculated fuel consumption, g kWh ⁻¹	194
Exhaust temperature after the engine, °C	330
Exhaust temperature at the funnel top, °C	263-266
Exhaust flow, main engine, Nm ³ h ⁻¹	110 000
Exhaust flow speed, m s ⁻¹	25

Analysis of soot collected in field campaigns

L2MS

Analysis of soot collected in field campaigns

Presence of transition and alkali metal in the samples

Fuel characteristics of the HFO used by the ship: Analysis A1 was performed on routine basis after the fuel purchase on behalf of the ship owner, analysis A2 was performed on fuel sample taken directly from the engine during the campaign. Hyphered cell means that the parameter was not investigated by the analysis.

Tested Results	Units	۸1	A2
Density at 15 °C	kg m ⁻³	985	987.5
Viscosity at 50 °C	mm ² s ⁻¹	373.2	421
Water	% vol.	< 0.1	-
Micro-carbon residue	% mass	13	-
Sulphur (S)	% mass	1.97	1.9
Carbon (C)	% mass	-	86.5
Hydrogen (H)	% mass	-	10.6
Nitrogen (N)	% mass	-	0.34
Oxygen (O)	% mass	-	0.7
Total sediment potential	% mass	0.01	-
Ash	% mass	0.03	-
Vanadium (V)	mg kg ⁻¹	107	-
Sodium (Na)	mg kg ⁻¹	17	-
Aluminium (Al)	mg kg ⁻¹	3	-
Silicon (Si)	mg kg ⁻¹	5	
Iron (Fe)	mg kg ⁻¹	13	
Nickel (Ni)	mg kg ⁻¹	35	-
Calcium (Ca)	mg kg ⁻¹	3	-
Magnesium (Mg)	mg kg ⁻¹	<1	-
Lead (Pb)	mg kg ⁻¹	<1	-
Zinc(Zn)	mg kg ⁻¹	<1	-
Phosphorus (P)	mg kg ⁻¹	<1	-
Potassium (K)	mg kg ⁻¹	1	-
Clack Dates	°C	>70	-
Heating value at const. pr	ess. MJ kg ⁻¹	-	40.34
Heating value at const. vo	L MJ kg ⁻¹	-	42.59

In agreement with the fuel composition

Analysis of soot collected in field campaigns

L2MS

In agreement with GC analysis of carbonaceous aerosols collecting during summertime in Arctic Ocean, Xie et al, J GEOPHYS RES 112, (2006) D02306

Scarce presence of PAHs in the hot zone:

-different condensation conditions in relation to different volatilities

- consistent with the higher organic content detected by evolved gas analysis (EGA) in the cooled diluted exhaust. compared to the hot zone.

Conclusions & perspectives

Parametric characterization of the laser desorption and ionization processes in the fluence domain

adsorbed phase addressed exclusively sensitivity, selectivity, no fragmentation

Still work to do:

no C_xH_y = no aliphatics, no fragments or lack of ionization efficiency? (3-photon vs 2-photon)

SOOT ANALYSIS

Systematic measurements ... different fuels ... combustion stage Basic soot growth mechanisms ... low pressure flames Field campaigns ... december 2009

Acknowledgments

PhLAM Lille	PC2
C. Focsa	P. D
B. Chazallon	E. T
C. Mihesan	JF. I
A. Faccinetto	R. L

- **U. Marseille 2A Lille** B. Demirdjan esgroux D. Ferry **'herssen** Pauwels **State University**, *lemaire* Moscow O. Popovitcheva
 - V. Tishkova

- **IVL Göteborg**
 - J. Moldanova
 - E. Fridell
 - **NSERC** Ottawa K. Thomson

Thank You 111

- the increase of internal energy E_{int} acquired at the desorption level :
 - leads to an easier ionization(i.e. at lower Fion)
 - promotes fragmentation at high Fd (together with in-plume collision)

Faccinetto, Thomson, Ziskind, Focsa, Appl. Phys. A, 92, 969 (2008)

Role of the internal energy increase in the progressive dissociation of all the various species involved

Specific fragmentation pathway of the PAH (ladder switching model, U. Boesl, J. Phys. Chem. 95, 2949 (1991)):

> -Multiphoton absorption interrupted by dissociation channels to fragment ions. -Absorption within these fragment ions continues until the next dissociation channels "switch over" to a smaller fragment ion

- Specific behavior of different PAHs with respect to the desorption and ionization processes (and to the coupling between them)
- Possible selective desorption method ?

C. Mihesan et al, J. Phys.: Condens. Matter, 20, 025221 (2008)

1.0

1.0

1.0

Ethylene soot mass spectrum

behaviours, « light » and « heavy » masses

Future work

Find an experimental procedure to completely avoid gas condensation

➢ Find a correlation between PAH adsorbed on soot and the cartographies obtained for PAH (via Laser-Induced Fluorescence - LIF)) and soot (via Laser-Induced Incandescence - LII)

Into the flames...

Turbulent diffusion diesel flame

- Various different heights have been chosen:
 - Only gases before the sooting region (PAH have been condensed on activated carbon)
 - Young soot region
 - \geq Maximum of soot volume fraction F_v
 - Beginning of the oxidation region

PAH and soot *in-situ* detection is one of the main subjects of Romain Lemaire's PhD thesis

Experimental Technique:

Laser Desorption /Laser Ionization /ToF Mass Spectrometry

• Desorption Laser: doubled Nd:YAG, $\lambda = 532$ nm, 10 ns pulse, 10 Hz, 0.01–1.5 J/cm²

2 Ionization Laser Multiphotonic: quadrupled Nd:YAG, $\lambda = 266$ nm, 10 ns pulse, 10 Hz, 0.01-3 J/cm²

• Detection: Time-Of-Flight mass spectrometer

Ethylene soot mass spectrum

behaviours, « light » and « heavy » masses

Setup Optimization

Beam imaging configuration allowing a « quasi top-hat » beam profile

- increase ionization probe volume to increase sensitivity
- with increased sensitivity, lower ionization fluence
- Homogeneous beam over the entire ionization volume for a perfect control of the fluence

What about the ionization laser ?

What about the ionization laser ?

New Geometry

=> laser sheet => higher ionization volume (x10³)

ANATRAC

Back to basicslow pressure methane flame

 $CH_4: O_2: N_2 = 0.462: 0.398: 0.140$ 200 torr

Heaviest detected mass versus HAB (red dots) compared with the LII soot profile (black dots)

Gas phase: highest mass = 202 ... pyrene as elementary brick for subsequent PAH growth on soot surface (heterogeneous mechanism) ???

Into the flames...

Turbulent diffusion diesel flame

- Various different heights have been chosen:
 - Only gases before the sooting region (PAHs have been condensed on activated carbon)
 - Young soot region
 - > Maximum of soot volume fraction F_v
 - Beginning of the oxidation region

Into the flames...

Carbon desorption threshold 5 Pyrene Intensity (u.a.) 4 3 2 1 Ā 0 1.0 1.2 1.4 0.8 0.2 0.4 0.6 0.0 F_D (J/cm²) $F_{ion} = 0.2 \text{ J/cm}^2$ pyrene Concentration: 5 .10⁻⁶ mol/g

Desorption issue in synthetic soot

Desorption issue in synthetic soot

Pyrene Intensity (u.a.)

Desorption issue in synthetic soot

After about 1000 laser shots

Pyrene Intensity (u.a.)

pyrene

Concentration: 5 .10⁻⁶ mol/g

Desorption issue

Loss of selectivity

Facilitates analysis of spectra

Analysis of soot collected in field campaigns

Fig. 11. Mineral/ash particle in the diluted exhaust sample and its SAED pattern.

Elemental content obtained from EDS analyses (in weight %) of different types of particles in the hot and the cooled diluted exhaust. Content of each particle type was obtained by one time measurement of an individual particle or aggregate presented by the corresponding figure.

lement	Soot-type particles, Fig. 7	Char particle, Fig. 9	Char-mineral particle, Fig. 10	Mineral/ash particle, Fig. 11	OC-type particles, Fig. 12
-	94.4	93.1	53.5	11.1	79.9
)	0.7	n.d.	3.8	5.7	5.1
ò	0.3	2.1	7.5	4.9	3.6
/	2.7	3.8	17.6	30.7	11.2
li	1.8	0.9	8.6	20.9	n.d.
ă	0.1	n.d.	n.d.	n.d.	0.2
Ca	n.d.	0.1	9.0	26.7	n.d.

n.d. - not detected.

Analysis of soot collected in field campaigns

 Quarts filter in hot exhaust
 PM mass, EGA

 Quarts, glassfiber or Teflon filter in cooled, diluted
 PM mass, EGA

 exhaust
 PM mass, EGA

 Cu microgrids and amorphous-carbon holey film
 TEM, EDS, SAED

 holders in hot exhaust
 TEM, EDS, SAED

 Cu microgrids and amorphous-carbon holey film
 TEM, EDS, SAED

 holders in cooled, diluted exhaust
 TEM, EDS, SAED

 Borosilicate porous glass filter in hot exhaust
 L2MS

LC Borosilicate porous glass filter in cooled, diluted exhaust L2MS

MH

MC

LH

Emission factors EF, emission rates Er and concentrations C in exhaust from the main diesel engine operating under conditions as listed in Table 2 (84% power load) and using the HFO with composition given in Table 3. Concentrations are given at normalized conditions (273.14 K, 1013.25 hPa).

Exhaust component	EF, g kWh ⁻¹	EF, g (kg fuel) ⁻¹	Er, kg h ⁻¹	C, g Nm ⁻³
NO _x	14.22	73.4	241.7	2.20
CO ₂	667	3441	11 339	103.1
CO	0.42	2.17	7.1	0.065
HC	0.07	0.36	1.2	0.011
0 ₂	1270	655.3	21 590	196.3
SO ₂	7.62	39.32	129.5	1.18
SO3	0.11	0.57	1.9	0.017
Benzene	0.012	0.06	0.21	0.002
PM	0.29	1.49	4.86	0.044
PMª	1.03	5.31	17.43	0.158
0C ^a	0.30	1.58	5.15	0.047
EC ^b	0.02	0.13	0.42	0.004
As h ^b	0.19	0.98	3.19	0.029
Sulphate ^a	0.15	0.76	2.47	0.022

^a After cooling in the dilution system.

^b Average hot exhaust and diluted exhaust.

Complementary gas phase / particulate matter analyses

PAHs concentration in synthetic soot

- PAHs' amount in carbon calculated as a difference, using Lambert-Beer's law to measure the exhaust solution concentration:
 - Build a calibration curve for each PAH
 - Read the absorbance at the chosen wavelength

Soot Sampling

In our experimental work LDI TOF-MS is an ex-situ technique

- Soot must be <u>sampled</u> from flames
- Soot is collected through a double-wall quartz probe, which allows (1) local sampling and (2) fast dilution with gaseous nitrogen, needed to minimize:
 - Combustion gas condensation
 - Chemical reactions

Soot is deposed on the surface of a porous Borosilicate glass filter, suitable for the mass analysis

...Reproducibility

