Aerosol Particle Size Distribution retrieval from multiwavelength lidar signals

A.Karolina Jagodnicka, Tadeusz Stacewicz, Michał. A. Posyniak*, Szymon P. Malinowski*,

Institute of Experimental Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw, Poland *) Institute of Geophysics, University of Warsaw, ul. Pasteura 7, 02-093 Warsaw, Poland.

3rd International Workshop on Optoelectronic Techniques for Environmental Monitoring, 30 IX – 2 X, 2009 Bucharest, Romania

Aerosol Particle Size Distribution

APSD n(r,z)

$$n(r,z) = \frac{dN}{dr}$$

Extinction coefficient

$$\alpha_{\lambda}(z) = \int_{0}^{\infty} \pi r^{2} n(r, z) Q^{E}(\lambda, r) dr$$

Backscattering coefficient

$$\beta_{\lambda}(z) = \int_{0}^{\infty} \pi r^{2} n(r, z) Q^{B}(\lambda, r) dr$$

N – particle number r – radius z - distance

$$r_{eff}(z) = \frac{\int r^3 n(r, z) dr}{\int r^2 n(r, z) dr}$$

Mie-Lorenz scattering

extinction efficiency

Lidar signal elaboration

$$S(z) = \frac{A}{z^2} \cdot \beta(z) \exp\left[-2\int_0^z \alpha(x) dx\right]$$

- A lidar (apparatus) constant
- z distance

- α extinction coefficient
- β backscatter coefficient

$$L(z) = S(z) \cdot z^{2} = A \cdot \beta(z) \exp\left[-2\int_{0}^{z} \alpha(x) dx\right]$$

1. Range corrected lidar signals

$$L(z,\lambda_1) = A(\lambda_1)\beta(z,\lambda_1)\exp\left[-2\int_{z_0}^{z}\alpha(x,\lambda_1)dx\right]$$

...
$$L(z,\lambda_k) = A(\lambda_k)\beta(z,\lambda_k)\exp\left[-2\int_{z_0}^{z}\alpha(x,\lambda_k)dx\right]$$

Lidar signal elaboration

<u>2</u>. Ratio of signals from neighbouring distances

$$\frac{L_{\lambda}(z_{l+1})}{L_{\lambda}(z_{l})} = \frac{\beta_{\lambda}(z_{l+1})}{\beta_{\lambda}(z_{l})} \exp\{-\Delta z [\alpha_{\lambda}(z_{l}) + \alpha_{\lambda}(z_{l+1})]\}$$

Cost function

$$\chi^{2}(z_{l}) = \sum_{\lambda=1}^{\Lambda} \left(\frac{L_{\lambda}(z_{l+1})}{L_{\lambda}(z_{l})} - \frac{\beta_{\lambda}(z_{l+1})}{\beta_{\lambda}(z_{l})} \exp\left\{-\Delta z \left[\alpha_{\lambda}(z_{l}) + \alpha_{\lambda}(z_{l+1})\right]\right\}\right)^{2}$$

 $L(z,\lambda_1) = A(\lambda_1)\beta(z,\lambda_1)\exp\left[-2\int_{z_0}^{z}\alpha(x,\lambda_1)dx\right]$... $L(z,\lambda_k) = A(\lambda_k)\beta(z,\lambda_k)\exp\left[-2\int_{z_0}^{z}\alpha(x,\lambda_k)dx\right]$

3. Substitution of
$$\alpha$$
 and β coefficients...
 $\beta_{\lambda}(z) = \int_{0}^{\infty} \pi r^{2} n(r, z) Q^{B}(\lambda, r) dr$
 $\alpha_{\lambda}(z) = \int_{0}^{\infty} \pi r^{2} n(r, z) Q^{E}(\lambda, r) dr$
... the unknown - n(r,z) (no lidar ratio)

4. n(r,z) is found with minimization technique

n(r,z)

Assumptions

•APSD as two mode distribution, each mode – in log-normal form

$$n(r,z) = \frac{N(z)}{\sqrt{2\pi} \cdot \log\sigma(z)} \cdot \frac{1}{r} \cdot \exp\left\{-\frac{\left[\log r - \log r_{\rm m}(z)\right]^2}{2 \cdot \log^2\sigma(z)}\right\}$$

 $\begin{array}{l} N-number \ concentration \\ \sigma \ \ \ standard \ \ deviation \\ r_m-modal \ \ radius \end{array}$

- spherical droplets
- known refractive index (water, salt)
- coefficients of backscattering β and extinction α calculated with Mie theory

steps

Parameters' ranges

$$70 < N_1 < 9000,$$
 $0.15 < N_2 < 52,$ $50 < r_{m_1} < 240,$ $230 < r_{m_2} < 1600,$ $1.5 < \sigma_1 < 2.7;$ $1.5 < \sigma_2 < 2.7;$

Distribution

$$n(r,z) = \frac{N_{1}(z)}{\sqrt{2\pi} \cdot \log\sigma_{1}(z)} \cdot \frac{1}{r} \cdot \exp\left\{-\frac{\left[\log r - \log r_{m_{1}}(z)\right]^{2}}{2 \cdot \log^{2}\sigma_{1}(z)}\right\} + \frac{N_{2}(z)}{\sqrt{2\pi} \cdot \log\sigma_{2}(z)} \cdot \frac{1}{r} \cdot \exp\left\{-\frac{\left[\log r - \log r_{m_{2}}(z)\right]^{2}}{2 \cdot \log^{2}\sigma_{2}(z)}\right\}$$

Scattering coefficients

$$\beta_{\lambda}(z) = \int_{0}^{\infty} \pi r^{2} n(r, z) Q^{B}(\lambda, r) dr \qquad \alpha_{\lambda}(z) = \int_{0}^{\infty} \pi r^{2} n(r, z) Q^{E}(\lambda, r) dr$$

$$= \frac{\beta_{\lambda}(z_{l+1})}{\beta_{\lambda}(z_{l})} \exp \left\{ -\Delta z \left[\alpha_{\lambda}(z_{l}) + \alpha_{\lambda}(z_{l+1}) \right] \right\}$$

best fits selected

Multiwavelength lidar

Optical sender:

* pulsed laser:
Nd:YAG - 1064, 532, 355 nm;
E of the light pulses ~ 200, 100, 60 mJ,
repetition rate ~ 10 Hz.

Optical receiver:

- Newtonian telescope
 (mirror ~ 400 mm in diameter, focal length = 1200 mm),
- * 3-channel polychromator,
- * 12-bits A/D converters (50 MHz)

Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR), Andoya, Norway, July/August 2007

aerosol under cumulus cloud - 2006

aerosol under cumulus cloud - 2008

Normalized to reference height

Summary

• method to determine aerosol particle size distribution from multiwavelength lidar signals was presented

- assumed spherical shape and known refractive index of aerosol particles,

-lidar ratio not necessary

• experimental test - comparison with PMS

• method used for data under cumuli base – results seem to confirm (qualitatively!) CCN activation and growth under the cloud base

Thank You for attention

