FIRST RESULTS OF AEROSOL MICROPHYSICAL PROPERTIES BY 3+2 RAMAN LIDAR AT EARLINET GRANADA STATION

Juan Luis Guerrero-Rascado^{1,2}, Detlef Müller^{3,4}, Francisco Navas-Guzmán^{1,2}, Daniel Pérez-Ramírez^{1,2}, and Lucas Alados-Arboledas^{1,2}

> ¹Department of Applied Physics, University of Granada, Spain ²Andalusian Center for Enviromental Research (CEAMA), Granada, Spain ³Gwangju Institute of Science and Technology (GIST), Republic of Korea ⁴Institute for Tropospheric Research, Leipzig, Germany

RADIATIVE FORCING GLOBAL AVERAGES IPCC2007

Aerosol radiative forcing remains as one of the largest source of uncertainty in the radiative forcing of Earth's climate

OTEM 2009 workshop Bucharest, 1st October 2009

4

PASSIVE REMOTE SENSING INSTRUMENTATION

CIMEL CE 318 RADIOMETER

INSTRUMENTS IN AERONET and RIMA

Filters 340, 380, 440, 670, 870, 936, 1020 nm IFOV 1.2° Robotic System: -Sun Photometer -Sky Radiance: -Almucantar -Principal Plane AERONET VEROSOL ROBOTIC NETWORK

OTEM 2009 workshop Bucharest, 1st October 2009

RAMAN LIDAR LR331D400

- Laser source: Nd:YAG
- Wavelenghts: 1064, 532 and 355 nm
- Energy/pulse: 110, 65, 60 mJ
- Receiving telescope: Cassegrain design

Detection channels: elastic @ 1064 nm elastic @ 532p nm (parallel polarization) elastic @ 532s nm (cross polarization) elastic @ 355 nm Raman @ 408 nm (by water vapor) Raman @ 387 nm (by atmospheric N₂) Raman @ 607 nm (by atmospheric N₂)

I. Veselovskii I., Appl. Opt., 41, 3685-3699, 2002

OPTICAL DATA SERIES IN JULY 2008 BY CIMEL SUN-PHOTOMETER

AIR MASS ORIGIN

OPTICAL PROPERTIES BY 3+2 RAMAN LIDAR

Selected period: -atmospheric stability -cloud free

MICROPHYSICAL PROPERTIES: COMPARISON WITH SUN-PHOTOMETER RETRIEVALS

EFFECTIVE RADIUS VERSUS ANGSTRÖM EXPONENT

- Anthropogenic/North America EARLINET
- Arctic Haze, Urban Pollution/North America, Euro
- Anthropogenic/Biomass INDOEX
- Forest Fire Spitsbergen
- Marine INDOEX

Habilitation, Detlef Müller, 2007

SSA: COMPARISON WITH SUN-PHOTOMETER RETRIEVALS

Similar values for layers (2.0-4.0 km) Columnar values slightly larger than those in layers Differences between lidar and sun-photometer are due to the different time: connection to surface boundary layer IN SITU MEASUREMENTS AT THE SURFACE BOUDARY LAYER

- THREE WAVELENGHTS INTEGRATING
 NEPHELOMETER
- MULTI ANGLE ABSORPTION PHOTOMETER MAAP
- AEROSOL PARTICLE SIZER APS
- SIZE RESOLVED (PM10&PM1) CHEMICAL

COMPOSITION

TEMPORAL EVOLUTION OF SSA: IN SITU MEASUREMENTS

Single scattering albedo determined by TSI nephelometer and Multi Angle Absorption Photometer (MAAP)

CONCLUSIONS

 $\mathbf{C} \cdot \mathbf{E} \cdot \mathbf{A} \cdot \mathbf{M} \cdot \mathbf{A}$

The approach presented in this study has shown the great potential that the combination of Raman lidar and sun-photometer measurements provides to investigate the relevant properties of atmospheric pollution

GIST

 For this study case, we found lidar ratios around 40 sr at 355 and 532 nm with low spectral dependence, mean Angström exponents between 1.04-1.25 for the different spectral ranges

•We also successfully retrieved the climate-relevant microphysical parameters as effective radius and single scattering albedo for this study case. Mean values of the effective radius ranged between 0.17-0.19 µm in most sections of the profile, the mean single scattering albedo varied between 0.72-0.84 at the lidar wavelengths

Such advanced Raman lidar is an essential tool for characterization of the complex vertical distribution of aerosol particles

This work has been developed by the Atmospheric Physics Group, GFAT, at the Andalusian Center for Environmental Research, CEAMA, of the University of Granada

Acknowledgements

This work was supported by La Dirección General de Ciencia y Tecnología from the Education and Research Spanish Ministry through coordinated projects No: CGL2007-66477-C02-01 CSD-2007-00067 and Andalusian Regional Government through projects P06-RNM-01503 and P08-RNM-3568. The author would like express their gratitude to the FLEXPART team.

... thank you for your attention

IIIII

100.00