Continuous Fluorescence Monitoring of River Organic Matter

Elfrida Carstea¹, Andy Baker^{2,3}, Darren Reynolds⁴

¹National Institute of R&D for Optoelectronics, Romania
²University of Birmingham, UK
³University of New South Wales, Australia
⁴University of the West of England, UK

frida@inoe.inoe.ro

Fluorescence spectroscopy – pros & cons

• Fast

- Sensitive
- Small quantities of sample
- No sample pretreatment
- Correlates with standard parameters (BOD, TOC)

- Qualitative
- Influenced by external factors
- Only organic contamination

Fluorescence spectroscopy

Introduction	Methodology	Results	Conclusions
--------------	-------------	---------	-------------

Natural Organic Matter (NOM)

- comprises the decay products of animal and plant matter.
- NOM:
 - Autochthonous microbially derived
 - Allochthonous terestrially derived

Introduction	Methodology	Results	Conclusions

NOM Fluorescence

Introduction	Methodology	Results	Conclusions	

NOM Fluorescence

Water sample	Excitation wavelength (nm)	Emission wavelength (nm)
Rivers	340	448
Humic substances	310	423
Coastal waters	342	442
Marine, surface waters	299	389
Marine, deep waters	340	438
Groundwaters	320	407
Lake	330	437

Coble (1996)

Hudson et al. (2007)

Results

Downing et al., 2009

- In situ measurements using a WET Labs WETStar
- Single-band excitation-emission in situ fluorometer 370 nm excitation / 460 nm emission

	4 • · ·
Introduc	
Innouuc	υIU

Methodology

Results

HYDROLOGICAL PROCESSES Hydrol. Process. 23, 1937–1946 (2009) Published online 13 May 2009 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.7335

Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK

Elfrida M. Carstea,^{1*} Andy Baker,² Gabriela Pavelescu¹ and Ian Boomer² ¹ National Institute of R&D for Optoelectronics, Magurele, Romania ² School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK

Abstract:

Continuous monitoring of dissolved organic matter (DOM) character and concentration at hourly resolution is rare, despite the importance of analysing organic matter variability at high-temporal resolution to evaluate river carbon budgeting, river water health by detecting episodic pollution and to determine short-term variations in chemical and ecological function. The authors report a 2-week experiment performed on DOM sampled from Bournbrook, Birmingham, UK, an urban river for which spectrophotometric (fluorescence, absorbance), physiochemical (dissolved organic carbon [DOC], electrical conductivity, nH) and isotopic (D/H) parameters have been measured at bourly frequency. Our results show that the river had sub-daily

Methodology

Results

Methodology

- Varian Cary Eclipse spectrofluorometer, scan rate 9600 nm/min, integration time 0.0125 s, both excitation and emission slits at 5 nm
- Mean value of Raman peak intensity 7 arbitrary units.
- Excitation wavelength range 225 nm 400 nm, 5 nm step
- Emission wavelength range 280 nm -500 nm, 2 nm step.
- Water pumped to Cary Eclipse Fluorescence Spectrometer (20ml /min).
- Fibre-optic probe with 1 cm path-length liquid probe tip measures fluorescence EEMs every 3 minutes in a 20 ml sample chamber.
- Samples also taken every hour from both river and sample chamber for fluorescence, UV absorbance, pH, electrical conductivity, hydrogen isotopic composition, and total organic carbon.
- Water temperature monitored using a Tinytag T logger. River stage recorded every hour.

Introduction Methodology Rest	esults	Conclusions
-------------------------------	--------	-------------

Sampling site

	Introduction	Methodology	Results	Conclusions
--	--------------	-------------	---------	-------------

Introduction Methodology Results C

Fluorescence EEMs

T	(T	4 •	
m	rod	netr	nn

Fluorescence EEMs

Introduction

Methodology

Results

Introduction

Introduction

Time (4-14th August 2009)

ntraduation	

Introduction

Introduction

Introduction	Methodology	Results	Conclusions

Introduction	Methodology	Results	Conclusions	

	· ·		•
n	rnc	1101	inn
		luci	

- First continuous EEM data for any application.
- Successful optical protocols (slits, filters, scan speeds, etc.).
- Data gaps due to software bugs.
- Ten days of continuous data collection until generator failure.
- No drift or calibration issues over the ten days.
- Identification of major diesel pollution event.
- Identification of ~ hourly minor pollution pulses from cross connections.
- Unanswered question how long could continuous EEMs be collected for?

