Evidence of Extreme events from Multi-wavelength LIDAR measurements during the EARLI09 campaign

L. BELEGANTE, C. TALIANU, A. V. NEMUC, D. N. NICOLAE

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

Overview

Lidar systems are laser based instruments that can evidence local atmospheric phenomena due to their high dynamic range and real time response

The paper presents a case study of an atmospheric extreme event observed during an inter-comparison campaign in Leipzig – Germany on the 26th of May 2009

Overview Introduction

EARLI09 Systems Extreme Phenomena Instrument Models Case study Discussion Conclusion

Introduction

EARLI09

 organized at The Institute for Tropospheric Physics, Leipzig Germany

 direct comparison of atmospheric measurements with different lidar systems

 from May 4th to May 29th

Introduction

Systems in the EARLI09 campaign

- 16 lidar systems

- 90 channels

- 58 elastic backscatter
- 32 Raman channels

24 Days of measurements

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

Introduction

Weather related phenomena

- most of this phenomena – troposphere

- cannot be identified by ground weather instruments in real time

occurs when two air masses- one warm and one
 cold – meet

- the masses develop a sharp boundary or interface (where the temperature difference becomes intensified)

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

Introduction

http://www.physicalgeography.net/fundamentals/7r.html

OTEM2009 Laser Remote Sensing Department National Institute of R&D for Optoelectronics – INOE2000

Instrument

- **RALI Multi-wavelength Raman Lidar**
 - Total of 12 channels
 - 7 elastic channels
 - 5 inelastic channels

- 400mm Cassegrain Telescope

- FOV 1.73 mrad
- 10 Hz laser
- 90 mJ @ 1064 nm
- 50 mJ @ 532 nm
- 60 mJ @ 355 nm

Models

For this case-study:

DREAM - The Dust Regional Atmospheric Model

Is an integrated modeling system to describe the dust cycle in the atmosphere

HYSPLIT - Hybrid Single Particle Lagrangian Integrated Trajectory Model

Is a new system for computing simple air parcel trajectories to complex dispersion and deposition simulations

Case-Study

Case of an atmospheric phenomenon during measurements on May 26, 2009

The EARLIO9 schedule for that day

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

Case-Study

May 26th 2009

- two phenomena: Saharan dust layer @ 4500m and a cloud formation reaching the Free Troposphere

Saharan Dust Event: DREAM, HYSPLIT and RALI ALGORITHM

Cloud formation: WEATHER MAPS - interpretation

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

May 26th 2009

Saharan Dust event Saharan Dust concentration- DREAM

Laser Remote Sensing Department

National Institute of R&D for Optoelectronics – INOE2000

Case-Study

May 26th 2009

Saharan Dust event

Atmospheric layers obtained from RALI

algorithm

Layers height were determined by applying the gradient method [2] to the RCS

OTEM2009LaserNational Institute of R&D for Optoelectronics – INOE2000

Discussion

May 26th 2009

Case Study

•aerosols at 4500m – higher depolarization coefficient than the aerosol in PBL
•color ratio of 0.9 (b₅₃₂/b₃₅₅) & Angstrom exp. 0.1 (355/532)

=> particles with significant asphericity

OTEM2009

National Institute of R&D for Optoelectronics – INOE2000

Discussion

May 26th 2009

Case Study

•the formation of clouds at dust layer altitudes indicates that the mineral is somewhat hygroscopic (due to changes in composition during transport across the Mediterranean Sea)

OTEM2009

National Institute of R&D for Optoelectronics – INOE2000

Case-Study

May 26th 2009

Cloud Formation – the second event of this case-study

- a short duration cloud formation developed in the PBL and reached the FT, overlapping on the dust intrusion event.

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

Case-Study

May 26th 2009

Cloud Formation

The weather map over Germany shows in area of Leipzig a large discontinuity in temperature, wind and air composition.

12 UTC

6 UTC

http://www.wetter3.de/fax National Institute of R&D for Optoelectronics – INOE2000

Discussion

May 26th 2009

Case Study

The HYSPLIT GDAS Meteorological data for 26 May 2009

ELHUMID

<u>m</u>

Laser Remote Sensing Department

National Institute of R&D for Optoelectronics – INOE2000

Conclusions

May 26th 2009

Lidars:

- vertical distribution of aerosols
- vertical structure of aerosol layers.
- highlight events such as atmospheric turbulence or vortices of air in the troposphere.

Models:

• for understanding phenomena – synergy between measurements and models

Cloud Formation

- a local extreme event occurred on May 26th during EARLI09 campaign
- the extent of this event is not signalized by any other measurement / model

Conclusions

May 26th 2009

Considering the complexity of information necessary for a complete understanding of processes in the atmosphere, no instrumentation proved to be capable so far to provide reasonable answers. Only *a synergy between ground-based, airborne and remote sensing instruments,* as well as regional and global atmospheric models could provide this.

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

References

References

May 26th 2009

•[1]Nickovic, S., A. Papadopoulos, O. Kakaliagou and G. Kallos, Model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res., **106**, pp. 18113-18129, 2001

•http://www.bsc.es/projects/earthscience/DREAM/

•http://www.arl.noaa.gov/ready/hysp_info.html

•[2]Sabina Stefan, Doina Nicolae and Mihaela Caian, Secretele aerosolului atmosferic in lumina laserilor, Ed. Ars Docendi, Bucuresti 2008, ISBN 978-973-558-357-6

•http://www.wetter3.de/Archiv/

•[3]Cooley J. R., and M. E. Soderberg, 1973: Cold air funnel clouds. NOAA Tech. Memo. NWS CR-52, Scientific Services Division, NWS Central Region, Kansas City, MO, 29 pp

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000

References

May 26th 2009

Thank You!

OTEM2009 Laser National Institute of R&D for Optoelectronics – INOE2000