

ARISTOTLE UNIVERSITY OF THESSALONIKI - AUTH LABORATORY OF ATMOSPHERIC PHYSICS - LAP

Seven years of Raman/backscatter lidar observations of free tropospheric aerosols over Thessaloniki: Geometrical and Optical properties

Elina Giannakaki, Dimitris Balis and Vassilis Amiridis

Bucharest 2009

Outline

- Introduce our place
- Describe lidar system
- Seasonality of optical properties
- Cluster analysis and aerosol sources
- Characteristic «signatures» of aerosol «types»
- Geometrical properties
- Conclusions and next steps

Thessaloniki in a «key» position

Backscatter – Raman Lidar

The measurements from 2001 to 2007:

Independently datasets of AOD

Seasonal variability of AOD

Free tropospheric AOD contribution

Seasonally mean vertical profiles

Cluster analysis

Cluster	Possible Sources of Aerosols
North / NorthEast	Balkans, Eastern Europe, Biomass Burning
NorthWest	Central Europe, Maritime from Atlantic Ocean
South / SouthWest	Saharan, Italy, Maritime from Mediterranean
West	West Europe, Maritime from Atlantic Ocean, Biomass Burning
Local	Central Europe, Maritime from Mediterranean

Optical properties for each cluster

Synergetic data to characterize the source region of aerosol particles

FLEXPART model

ns m / kg Maximum value 0.998E+04 ns m / kg Hot Spots from ATSR

Optical properties for each aerosol «type»

5 Aerosol	Saharan	Biomass	Local	Continental	Continental
Types	Dust	burning		Polluted	Clean

Optical properties for each aerosol «type»

Parameter	Saharan Dust	Biomass burning	Local	Continental Polluted	Continental Clean
AOD, column	0.88 ± 0.42	0.95 ± 0.34	0.75 ± 0.18	0.60 ± 0.54	0.52 ± 0.19
AOD, FT	0.46 ± 0.28	0.5 ± 0.22	0.28 ± 0.09	0.28 ± 0.17	0.21 ± 0.12
LR ₃₅₅ , sr	52 ± 18	69 ± 17	53 ± 19	56 ± 23	29 ± 7
Å _{b355/b532}	1.47 ± 1.0	1.71 ± 0.7	2.0 ± 0.9	1.42 ± 1.0	2.31 ± 0.5
N _{obs} , %	30	15	12	33	10

maximum middle minimum

Vertical profiles for each aerosol «type»

Characteristics «signatures» of aerosols

Identify Geometrical Properties

Geometrical layers for 2003 and 2006

Histograms of Geometrical Properties

Conclusions

- A seasonal pattern was found in the column AOD, with values up to I.8. The pattern was attributed to the enhanced contribution of the FT aerosol component to the total AOD (reaching 40%) in cases of Saharan dust and biomass burning aerosols
- A classification of optical aerosol properties was applied using a cluster analysis algorithm. Five main aerosol transport pathways were found for Thessaloniki. Additional synergetic tools were used to identify from these clusters aerosol sources and better characterize optical properties
- Characteristics optical «signatures» for each «aerosol type» were found, that can be used for reliable backscatter retrievals by space-borne instruments like CALIPSO
- The geometrical properties of elevated and distinct aerosol layers should be identified in order to better characterize each «aerosol type»

Acknowledgments

The measurements were performed under EARLINET EARLINET-ASOS, ESA and SCOUT-O3 projects

