vertical profiling of atmospheric particles

what are the capabilities of commercial Jen-Optik ceilometers?

Vyron Giannakopoulos and the Hamburg Lidar group

MPI-Metorology, Hamburg

Facts

- the Jen-Optik company has developed new cloud ceilometers with higher sensitivity than standard Vaisala ceilometers
- ca. 40 of these new ceilometers have been purchased by the German Weather Service and are distributed throughout Germany

Questions

- ... to what degree can the new generation of Jen-Optik ceilometers provide reliable information on aerosol profiling ?
- ... can Jen-Optik ceilometers data extend accurate samples at Lidar sites for spatial and temporaly more complete monitoring ?

experimental setup

- side-by-side deployment of the Hamburg Aerosol Raman LIDAR and the Jen-OptiK ceilometer at the University of Hamburg
- continuous sampling ... at the same 1.024 μm wavelength
- explore sampling at selected days
- harmonize averaging, compare profiles and explore correlations

	LIDAR (analog channel)	CHM 15k Ceilometer
Centre wavelength	1064 nm	1064 nm
Range	15 km	15 km
Range resolution	7,5 m	15 m
Time resolution	10 sec	30 sec
Time per file	3 h	24 h
Size of file	≈ 150 MB	≈ 12 MB

unified data averaging		
Total time	24 h	
Altitude-step	60 m	
Time-step	6 min	

LIDAR range corrected backscatter

May,5 2009

CEILOMETER range corr. backscatter May,5 2009

CEILOMETER range corr. backscatter May,5 2009

Conclusions

the Jen-Optik ceilometer can sense

- aerosol layers up to 4km (if they are no clouds)
- optically thin cloud structures (e.g. cirrus)
- responses are identical of side by side ceilometers
- averaging (time/space) should increase with height
- quantitative assessments (though) remain an issue
- it is definitely worth to consider and explore data of the 40 ceilometers of the German Weather Service for an improved temporal and spatial extension of EARLINET LIDAR data
- ... again "extension" ... and not a "replacement"

Possibilites

Quantitative grid assessments ?

- calibrate the lidar at 1024 μ m (diff. but possible)
- calibrate ceilometers in side-by-side comparisons
 - determine the instrument constants
- move ceilometers to surrounding satellite positions
- in regular intervals return for re-calibarations

Applications

- boundary layer altitude (daily, seasonal cycle)
- elevated dust frequency
- cirrus cloud statistics

Thank You!