Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Environmental monitoring by laser radar

Luca Fiorani, Francesco Colao, Antonio Palucci Laser Applications Section, ENEA, Italy

3rd Workshop on Optoelectronic Techniques and Environmental Monitoring

> OTEM 2009 WORKSHOP

Romania, Bucharest September 30 - October 2 annie

Plan

- Laser radar (atmospheric case)
- monitoring of industrial zones (absorption)
- profiling of volcanic plumes (backscattering & absorption)
- Laser radar (hydrographic case)
 - characterization of sea waters (fluorescence)
 - Conclusions

ENER

Clamin

Atmospheric lidar

- Lidar (light detection and ranging) = laser radar
- A laser sends a light pulse to the atmosphere

ENEN

- The atmosphere interacts with the laser beam
- A telescope detects the backscattered light

Advantages of lidar

- **Continuous retrieval** of aerosol load, wind speed and gas concentration profile in a considerable range and with a good spatio-temporal resolution
- Probe-less measurement, thus eliminating the possibility of modifying the sample
- Integrated-path determination, less sensitive to local effects
- Capability of sweeping the complete hemisphere, thus allowing to follow the physico-chemical dynamics of the atmosphere

ENER

annies

Backscattering lidar

Lidar equation

ENEN

n(R,λ)=n₀(λ) (A/R²) ζ(λ) β(R,λ) (cτ_D/2) exp[-2₀ $\int^{R} \alpha(R',\lambda) dR'$]

- n (n₀) number of detected photons (transmitted) R=ct/2 is the range (c is the speed of light, t is the time between transmission and detection)
- λ is the wavelength
- A (ζ) is the detection surface (efficiency)
- β (α) is the backscattering (extinction) coefficient
- τ_{D} is the response time of the detector

Differential absorption lidar

DIAL (differential absorption lidar) equation $C(R) = \{1/[2(\sigma_{ON} - \sigma_{OFF})]\}(d/dR) ln[n(R, \lambda_{OFF})/n(R, \lambda_{ON})]$

ENEN

 σ_{ON} (σ_{OFF}) is the cross section of the molecule at λ_{ON} (λ_{OFF}) λ_{ON} (λ_{OFF}) is the more (less) absorbed wavelength

Bucharest, 01/10/09

ATLAS

ATLAS (agile tuner lidar for atmospheric sensing)

14 2 14.15

ATLAS (Agile Tuner Lidar for Atmospheric Sensing). Bottom-left: CO₂ laser. Right: Newton telescope. Top-left: control/acquisition computer.

Bucharest, 01/10/09

-ENEN

Environmental monitoring by laser radar

(It into

Bucharest, 01/10/09

ATLAS

0	ere l'		
Sher		atioi	
Opee		uuu	
and the second	12.012	Part P	11
	12.17	1 1 2	11

-ENEL

	Pulse energy	850 mJ (at the 10P20 emission line)
Transmitter	Pulse duration	60 ns (full width at half maximum)
	Repetition rate	1 ÷ 20 Hz
	Transmitted wavelength	9.2 ÷ 10.8 μm
	Beam divergence	0.7 mrad
	Mirror coating	Au
Receiver	Diameter	310 mm
	Focal length	1.2 m
	Diameter	1 mm
175 4499 2474	Specific detectivity	4×10 ¹⁰ cm Hz ^{1/2} W ⁻¹
Detector	Gain	200
	Linear dynamic range	0.1 ÷ 1000 mV
	Bandwidth	0 ÷ 10 MHz
Analog-to-digital converter	Dynamic range	8 bit
	Sampling rate	10 Ms s ⁻¹
and mathematical State		Elarenser

Bucharest, 01/10/09

Occuber

11 Environmental monitoring by laser radar

or inc

Nys

Monitoring application

Ny 2 Parat

Power Plant of Cerano (Brindisi)

Bucharest, 01/10/09

- ENEN

Monitoring application

Ny a Paras

Concentration profiles in industrial zones

- ENEN

Plume profiling Ny s Proved - ENEN **Geographical situation** Laser beam Summit of Mount Etna III. Plume di Magazzen ht'Alfio) 7.75986 15.10459 da 10 km the second second Clamin Or inte Occurrent en a Environmental monitoring by laser radar Bucharest, 01/10/09 15

Bucharest, 01/10/09

Plume profiling

Ay 2 My at

Plume profiling

Bucharest, 01/10/09

ENE

From Etna to Stromboli...

- ENEN

Ay 2 19.15

From Etna to Stromboli...

The lidar is directed to the plume with a coelostat

-ENEN

Lidar fluorosensor

Received energy (fluorescence)

 $E_F(\lambda_F, R) = E_0 \frac{k_F A \varphi N_F(R) \sigma_F(\lambda, \lambda_F)}{R^2 m^2 [\alpha_w(\lambda) + \alpha_w(\lambda_F)]} \exp\{-[\alpha(\lambda) + \alpha(\lambda_F)]R_w\}$

- $-\lambda_{\rm F}$: fluorescence wavelength
- R: range

-ENEN

- E₀: transmitted energy
- k_F:system constant
- A: receiver area
- φ: two-way transmission factor
- N_F: number density of fluorescing molecules
- $\sigma_{\rm F}$: fluorescence cross section
- λ: laser wavelength
- α: extinction coefficient of air
- R_w: range of water surface
- m: refractive index of water
- α_w: extinction coefficient of water

Bucharest, 01/10/09

Environmental monitoring by laser radar

Adding the state of the state o

Clamin

Lidar fluorosensor

Received energy (Raman scattering of water)

$$E_{R}(\lambda_{R},R) = E_{0} \frac{k_{R} A \varphi N_{R} \sigma_{R}(\lambda,\lambda_{R})}{R^{2} m^{2} \left[\alpha_{w}(\lambda) + \alpha_{w}(\lambda_{R})\right]} \exp\left\{-\left[\alpha(\lambda) + \alpha(\lambda_{R})\right]R_{w}\right\}$$

- λ_F: Raman-shifted wavelength
- k_R:system constant

ENEN

- N_R: number density of water molecules (practically constant)
- $\sigma_{\rm R}$: Raman scattering cross section

Bucharest, 01/10/09

Environmental monitoring by laser radar

Clamis

Lidar fluorosensor

 $E^{*}(R) = \frac{E_{F}(\lambda_{F},R)}{E_{R}(\lambda_{F},R)} = \frac{k_{F} N_{F}(R) \sigma_{F}(\lambda,\lambda_{F}) [\alpha_{W}(\lambda) + \alpha_{W}(\lambda_{R})] \exp\{-[\alpha(\lambda) + \alpha(\lambda_{F})]R_{W}\}}{k_{R} N_{R}(R) \sigma_{R}(\lambda,\lambda_{R}) [\alpha_{W}(\lambda) + \alpha_{W}(\lambda_{F})] \exp\{-[\alpha(\lambda) + \alpha(\lambda_{R})]R_{W}\}}$ • If, as usual for CDOM (chromophoric dissolved organic matter) and chl-a (chlorophyll *a*) detection, the extinction coefficients ratio changes slowly and the exponentials ratio is close to unity, E* can be written as (k is a new system constant including also the cross sections)

 $E^*(R) = k \frac{N_F(R)}{N_R}$

Bucharest, 01/10/09

ENER

Environmental monitoring by laser radar

Clamin

ELF: ENEA Lidar Fluorosensor

- Transmitter: frequency-tripled Nd:YAG laser (1)
- Receiver: Cassegrain telescope (2)
- Detection: optical fibers (3), bandpass filters (4) and photomultiplier tubes (5)

LIF Band	λ[nm]	Notes
Excitation	355	Laser
Raman sc. (H ₂ O)	404	Transparency
		Oil slick thickness
		LIF data normalization
CDOM fl.	450	Humic and fulvic acids
		Crude oils
Phycoerytrin fl.	575	Algal pigment
Phycocyanin fl.	630	Algal pigment
Chlorophyll-a fl.	680	Algal pigment
	1 1	

Bucharest, 01/10/09

ENEN

Environmental monitoring by laser radar

28

ELF oceanographic campaigns

• 5 in Antarctica, 3 in the Arctic Ocean, 2 in the Mediterranean Sea and 2 from Italy to New Zealand

Bucharest, 01/10/09

ENEL

ELF comparison with radiometers

- ELF has been compared with SeaWiFS, MODIS-Aqua and MERIS (satellite radiometers)
- MERIS needs vicarious calibrations (ELF can calibrate MERIS)

ENEN

POLI

- POLI (portable lidar) is the evolution of ELF (patented)
- All the subsystems, i.e. laser source, collecting telescope, detection optics and acquisition electronics (patented) are miniaturized: the apparatus is contained in a fly case of 0.7×0.7×0.8 m³

Bucharest, 01/10/09

ENEN

Conclusions and acknowledgements

- The atmospheric lidar is a powerful tool for pollution monitoring (power plants) and environmental research (volcanic plumes)
- ENEA Laser Applications Section provided marine scientists with sensors, HW systems and SW applications (pigment measurement, satellite cal/val, oil spill detection)
- The authors are deeply grateful to Roberta Fantoni and the personnel of ENEA Laser Applications Section

Bucharest, 01/10/09

-ENEL

Environmental monitoring by laser radar

annies

Thank you all for your attention! I'm ready (?) for your questions...

